摘要:聚氨酯具有共同的机械和生物特性,使其成为许多可植入设备的理想选择。但是,某些聚氨酯会遭到一些体内降解机制的影响。例如,聚(酯)聚氨酯会发作水解降解,不再用于长期植入的装置中。聚(醚)聚氨酯固然水解稳定,但会以多种方式发作氧化降解,包含环境应力开裂和金属离子氧化。 我们开发了具有杰出生物稳定性的第二代聚(碳酸酯)聚氨酯。这种资料曾经过我们的专利措施制成小直径微孔血管移植物。我们经过体外审定实考证明了我们的血管移植物的生物耐久性,该实验将聚(碳酸酯)聚氨酯与传统的聚(醚)聚氨酯中止了比较。这种聚(碳酸酯)聚氨酯移植物也已被证明在体内实验植入物中具有长达 20 个月的生物耐久性,没有水解或环境应力开裂 (ESC) 的证据。 一、简介最近,引入了具有弹性的第二代微孔聚(碳酸酯)聚氨酯血管移植物,从而改善了处置特性。假体的纵向和径向顺应性提供了移植物和自然血管之间机械特性的更紧密匹配。这种移植物的顺应性、增加的抗扭结性、易于植入和穿刺自密封性也可能招致更好的性能和更少的临床并发症。 二、血管通路背景血管通路移植物用于血液透析治疗。几种急性和慢性疾病(包含多囊肾病、糖尿病和高血压)会损伤并可能破坏正常的肾功用,招致终末期肾功用衰竭 (ESRF)。ESRF 是不可逆的,目前,大约 60% 的 ESRF 患者经过血液透析维持治疗。血液透析请求患者每周最多衔接人工肾机器 3 次,每次约 4 小时。必须将一部分循环血液输送到人工肾机器,清洗洁净,然后返回给患者。这需求常规获取循环血液;通常运用两种不同的措施。第一种措施称为自体 AV 瘘管,通常称为原发性血管通路,包含将动脉直接吻合到相邻静脉,从而招致静脉扩张,从而提供易于接近的穿刺部位。在慢性肾功用衰竭患者中,在非优势腕部创建的自体 Brescia/Cimino 瘘管是血液透析通路的首选。 当主要通路因血栓构成、动脉瘤、感染或流量缺乏而失败时,合成资料用于提供次要血管通路。移植物将被植入皮下,并将动脉与静脉衔接起来。血液会从高压动脉系统十分疾速地流入低压静脉系统。移植物能够以直线或环状结构植入,通常位于前臂,但也可运用其他部位,例如上臂或大腿。 当透析需求血液通路时,将两根 16 号针头插入合成移植物中。一根针取出血液并将其输送到人工肾机器,第二根将血液返回给患者。1998 年,美国将植入大约 55,000 个新的和替代的 AV 通路移植物。 聚合物,如聚(对苯二甲酸乙二醇酯)(涤纶)、膨体聚(四氟乙烯)、微孔聚(醚)聚氨酯和一些生物资料都已被用于消费血管通路移植物。Voorhees、Jaretzi 和 Blackmore 初次报道了运用网状结构资料(Trelis 概念)的优点。Clowes、Kirkman 和 Reidy 表明,假如移植物的壁具有孔隙率,则组织只会穿透假体壁。鼓舞毛细血管的构成(新血管构成)。Fry 等人描画了孔隙率在动脉移植物愈合中的重要性,强调了孔隙率和良好愈合之间的关系。 收缩的聚四氟乙烯 (PTFE) 移植物,作为动静脉分流器植入,普遍用于瘘管失败或无法对手臂浅静脉缺乏的患者中止直接动静脉 (AV) 吻合术的状况。目前的 ePTFE AV 分流用具有显着的血栓闭塞、感染和穿刺并发症发作率。内膜增生,招致静脉吻合部位狭窄,招致近一半患者闭塞。其他主要缺陷是穿刺部位出血、扭结倾向和资料的高刚度,这可能会招致技术艰难。最后,重复的大针穿刺可能招致移植物解体,并有可能构成动脉瘤。 我们的聚碳酸酯聚氨酯血管通路移植物的一个重要设计属性是改进的自密封才干。这一点特别重要,由于 AV 通路移植物必须在两个中央穿刺,每周 3 次,用大规格的针头抽出和交流血液。目前运用的合成移植物在血液透析后拔针会大量出血,需求在穿刺部位运用加压绷带长达 20 分钟以抵达止血效果。新移植物的自密封功用将最大限度地减少穿刺部位的失血,并大大缩短止血时间。这种益处一旦经过临床研讨肯定,可能会对二次血管通路的经济思索产生十分积极的影响。 动脉粥样硬化性心血管疾病是西方世界发病率和死亡率的第一大缘由。这种类型的疾病会招致动脉管径部分减少(狭窄),最终招致闭塞。它减少以至阻止血液流过受影响的血管。发作这种状况时,总体结果从致残缺血性病症到坏疽、中风或心肌梗塞不等。 治疗基本上是外科手术,包含绕过受影响的血管段以恢复流量。在低流量的小直径血管中,例如冠状动脉和腘下血管,用作旁路移植物的反向大隐静脉是任何专业人士所反对的金规范 - 将比较主题血管。在越来越多的冠状动脉搭桥手术和大约 30% 的外周血管动脉搭桥病例中,大隐静脉要么不适合(由于硬化或静脉曲张等内在疾病),要么不可用(由于剥离或先前的血管手术)。 三、需求改进的动脉搭桥术英国血管外科学会讲演说,血管外科医生呈现严重肢体缺血(由于循环不良招致肢体丧失要挟)的患病率约为 2,500 人。发病高峰在 70 至 79 岁之间。估量随着人口老龄化,政府资助的英国国民健康效劳机构的担负会增加。为了避免截肢,需求中止外周动脉搭桥手术,通常是小腿或足部的小动脉。胜利的血运重建明显比截肢和随后的康复低价得多。该手术的最佳资料是自体大隐静脉。但是,在大约 30% 的患者中,不能运用静脉,必须寻觅替代导管。因而,需求一种内径为 4-5 毫米的人工血管移植物来中止这种类型的动脉重建,而现有资料无法满足这种需求。 一段时间以来,聚氨酯已被以为是一种有吸收力且易于取得的用于制造血管假体的资料。过去 20 年来,有关该资料的弹性特性以及低血栓构成性和出色的物理和机械特性的报道已招致大量研讨工作,旨在开发聚氨酯血管移植物。我们曾经运用我们的聚碳酸酯基无醚聚氨酯资料 ChronoFlex 开发了这样的移植物。(富临塑胶供给此资料) 四、聚氨酯植入物背景关于植入设备等外来资料来说,人体是一个极端恶劣的环境。聚酯聚氨酯被普遍研讨用于人造心脏,直到很快发现它们对水解降解的敏理性。聚醚聚氨酯被普遍运用,由于它们在大多数体内条件下都具有水解稳定性。对两种聚氨酯 Pellethane 和 Biomer 中止了长期的上市前生物稳定性测试。直到 Pellethane 用于已上市的设备中,才呈现了几种以前未知的氧化失效 发现了影响聚醚软链段的机制。为了抑止这种对氧化失效的敏理性,已设计聚碳酸酯基无醚聚氨酯ChronoFlex以提供水解和氧化生物稳定性。 五、聚氨酯技术字典将“弹性体”定义为“在室温下能够重复拉伸的资料,并且在立刻释放后将恢复到其近似原始长度。” 由于自然橡胶是最初的弹性体,在聚合物命名法中,物理性能接近或超越固化自然橡胶的合成资料称为“弹性体”。由于自然橡胶表示出如此出色的物理性能组合(即拉伸强度:400 psi, 400% 到 600% 的极限伸长率),术语“弹性等级”经常用于表征和描画具有最高物理性能的合成资料。性能最高的生物医学级弹性体是聚氨酯。聚氨酯是嵌段共聚物,含有经过氨基甲酸酯基团衔接的低分子量组分的嵌段。 “聚氨酯”一词可用于大量不同的组合物,具有令人诧异的不同应用。普通而言,用于医疗器械的聚氨酯是由芳香族或脂肪族聚氨酯“硬链段”和聚酯、聚醚或聚碳酸酯“软链段”组成的嵌段共聚物。通常,它们具有高拉伸强度和伸长率、高撕裂强度、优秀的耐磨性和优秀的生物相容性(包含血液相容性)。取决于硬链段与软链段的比例和链段的分子量 ,能够改动硬度、润滑性、柔韧性(弹性模量)和许多其他性能。因而,聚氨酯弹性体已被普遍评价用作人造心脏隔阂、心脏瓣膜、关节假体、血管移植物、尿道导管、乳房假体、阴茎假体和许多其他用于长期植入的装置。聚酯聚氨酯被用作乳房假体的掩盖物。聚醚聚氨酯弹性体自 1975 年以来不时用作神经系统导线的绝缘资料,自 1997 年以来不时用作心脏导线的绝缘资料。刚性聚醚聚氨酯弹性体用于植入式心脏起搏器、除颤器和神经系统模仿器的衔接器模块。 就生物相容性和机械性能而言,聚(醚)聚氨酯被以为是最先进的。但是,由乙醚聚氨酯制成的起搏器引线在植入生命系统时表示出一定水平的聚合物降解。 1983 年,Szycher 初次提出聚(醚)聚氨酯易受聚醚链体内氧化的影响。最易受醚氧影响的基团是α位的甲基,它发作氧化,最终招致链断裂,招致名义分子量显着降低,最终名义开裂。 固然通常不以为酶催化合成聚合物的降解,但存在基于醚的聚氨酯被酶在体内降解的可能性。威廉姆斯评论说,由于酶具有降低化学反响活化能的才干,因而通常只能在高温或光化辐射存在下发作的降解反响可能会在生理条件下发作。 在一项具有里程碑意义的研讨中,Phua 和 Anderson 经过体外裸露于酶来测试聚氨酯的生物降解。超薄样品在 37°C 下裸露于两种蛋白水解酶木瓜蛋白酶和尿酶中 1 到 6 个月。发现这两种酶都能够降解聚(醚)聚氨酯。由于木瓜蛋白酶与组织蛋白酶 B 密切相关,组织蛋白酶 B 是一种由炎症反响的细胞释放的硫醇内肽酶,因而作者得出结论,分段的聚醚聚氨酯能够被炎症反响过程中存在的酶降解。 六、环境应力开裂 (ESC)一种可能影响植入的聚(醚)聚氨酯的失效机制被称为环境应力开裂 (ESC)(图 1)。这是由于剩余应力和裸露于有害环境而产生的深裂纹。 图 1. 聚醚聚氨酯微孔血管移植物中的 ESC 示例。 ESC 与已知的炎症反响和异物反响过程分歧。Stokes 提出 ESC 是一个多要素的体内过程。在外植的裂纹样品上曾经呈现了浅表层自氧化。这种氧化触及软链段醚相关于氨基甲酸酯醚的损失。最值得留意的是,相关于约 1075 cm-1 的聚氨酯醚拉伸(见图 2),在约 1105 cm-4(当运用 FTIR 光谱检查时)的软链段醚拉伸损失。鉴于巨噬细胞和异物巨细胞存在于植入物的名义,氧自由基对名义的氧化是可能的,可能需求一些酶的辅佐。但是,聚合物名义的氧化缺乏以产生 ESC。作为剩余应变函数的植入物的对照研讨表明,存在诱导期和临界应变,两者都是应力开裂现象的病症。用 Pellethane 2363-80A 中止的因子研讨表明,诱导期和临界应变会遭到制造工艺的显着影响。例如,对样品中止退火以完整去除剩余应力将避免 ESC,前提是随后的应力不是由植入或在植入过程中施加的。对照动物研讨表明,ESC 会随着硬度的增加而减少。 图 2. FTIR 光谱比较未植入的 Pellethane 2363-80A(顶部)与微裂纹的组织接触名义(底部)。请留意,PTMEG 软链段在约 1105 cm-l 处相关于聚氨酯醚在约 1075 cm-l 处的损失。PTMO以太软段的损失也影响了2920和2850、1730和1705、1401到1310 cm-1左右的变更。 Zaho 等人。曾经暗示某些蛋白质,特别是巨球蛋白或铜蓝蛋白作为可能的催化剂或链转移剂,它们似乎有助于在体内经过醚软段展开裂纹。最近,Zaho 曾经能够在体外运用连续产生的 O2 产生没有蛋白质的 ESC 样裂痕。和*OH,其速率可能远远超越体内可能的速率。最新理论表明,体内 ESC 需求名义自氧化、剩余应力(应变、醚键和蛋白质裂纹驱动要素)之间的关键相互作用。 显着减少 ESC 毛病的主要要素,但它并不完整有效,也不能消弭名义微裂纹。即便设备是无压力的,它也不能无压力地植入,由于身体会施加自己的压力。因而,消弭 ESC 的牢靠措施是消弭聚合物中的醚键,用抗氧化和/或不易与裂纹驱动蛋白质催化剂相互作用的醚键替代。聚碳酸酯基聚氨酯ChronoFlex被设计为不含醚键,以试图对立这些降解机制。这些聚氨酯将在下面讨论。 七、新一代聚氨酯Capone 和 Szycher 都讲演说,聚(碳酸酯)聚氨酯可在长达六个月的时间内抵御生物氧化(名义开裂)。聚(碳酸酯)聚氨酯弹性体被制造为在心轴上拉伸至 300% 的管材,并植入实验动物的皮下。经过 SEM 和 FTIR 剖析评价,在 3 个月和 6 个月时回收了管子,没有任何退化的迹象。 Stokes 等人运用旨在加速环境应力开裂的“Stokes 实验”在体内比较了聚(碳酸酯)聚氨酯和聚(醚)-聚氨酯,运用应变作为时间促进剂。挤出的管材在心轴上被拉伸至 400% 的伸长率。聚(碳酸酯)聚氨酯在植入后 18 个月没有显现环境应力开裂的迹象。 八、资料和措施ChronoFlex 是由亚甲基二异氰酸酯 (MDI)、聚碳酸酯二醇和乙二胺在 DMAC 中以 2:1:0.97 的摩尔比合成的聚碳酸酯基聚氨酯。 移植物由专利措施制成。这触及“低温浇注凝固”。在我们的系统中,我们将制备好的聚合物溶液(由溶液级 ChronoFlex、水溶性多孔剂和名义活性剂组成)悄然地挤出到旋转和横向不锈钢芯棒的名义上。在分相凝固过程中,填料避免接枝结构在溶剂分散和填料溶解到凝固剂中时坍塌。这种措施能够消费出结构和尺寸分歧的小直径移植物,移植物是微孔的并且顺应单层结构,包含内、外皮和海绵状中间层,经过紧缩允许脉动传播输。 九、体外加速生物耐受性测试我们的措施基于 Zhao 等人开发的体外测试措施。运用玻璃棉和过氧化氢/钴 (II) 氯化物 H2O2/CoCl2 来复制体内巨噬细胞的氧化作用。我们比较了两种聚氨酯制成的具有相同尺寸和结构的微孔血管移植物。移植物的内径为5mm +/-0.1mm,壁厚为.9mm +/-0.05mm。资料是聚(醚)聚氨酯 Estane 5714F和聚(碳酸酯)聚氨酯 ChronoFlexAR/LT(联络富临塑胶获取资料细致信息)。每种类型的 10 个样品移植物经过以下方式预应力 运用 Instron Universal TestInstrument Model 1011 在 PTFE 心轴上拉伸每个单独的样品,以抵达 50% 的伸长率。经过将移植物的每一端用 PTFE 带 (2.00 mm) 系在心轴的球状端上来坚持应变(图 3)。 图 3. 在 PTFE 芯轴上拉伸的微孔血管移植物,用于体外生物耐久性测试。 结果是依据灾难性失败来判别的,灾难性失败被定义为样本中的大量撕裂或裂口,从而能够看到 PTFE 心轴。表 1 描画了聚碳酸酯资料的杰出性能及其优于聚醚资料的环境应力开裂才干。 体外研讨的结果十分令人鼓舞,并且似乎表明聚氨酯可用于长期植入物的真正可能性。为了进一步研讨该资料的生物耐久性,我们决议开端中止长期的体内动物植入。 十、体内实验植入物植入技术 经过 IV 注射 8 mg/kg 体重的喷妥钠钠来麻醉两只体重约 15 kg 的成年比格犬,分别为 3c361 和 3c366。气管插管后,将动物衔接到 Siemens 900C 呼吸机,并以 40/59/1% 的比例以 4-6 升/分钟的通气速率继续麻醉。 在运用无菌布单之前,将腹部剃毛并用含酒精的 hibitane 擦拭。植入途径为双侧腹主动脉至髂动脉搭桥,手术于1995年4月5日中止。 中止剖腹手术并裸露腹主动脉,包含三叉动脉和肾动脉。在部分纵向夹住肾下主动脉之前,静脉注射1000单位肝素。纵向切口大约是移植物直径的二到二倍半,切下 5 mm 内径的 ChronoFlex 移植物以合适主动脉切口。运用双端 5.0 Prolene 缝合线(Ethicon)中止端侧吻合。在吻合口的脚趾和脚跟处留缝线,以避免“荷包效应”,并用连续缝合线完成每一侧。将移植物切成一定长度以顺应大约 10% 的拉伸,并重复该过程以运用 7/0 Prolene 缝合线 (Ethicon) 与髂动脉树立端对侧吻合。 将髂动脉结扎到远端吻合口的近端,并用 PDS Loop 和 Ethilon 缝合线 (Ethicon) 缝合腹部。术后每天给予动物普鲁卡青霉素 5 次,持续 1 周。两只动物都在手术中存活下来。 每月对动物中止临床评价和 Du-plex 调查以肯定通畅性。 Dog 3C361。移植物从植入(95 年 4 月 5 日)到 1995 年 8 月上旬(大约 20 周)不时坚持通畅;在尸检中发现失败的缘由是近端吻合口狭窄。 Dog 3c366。从植入(95 年 4 月 5 日)到 1996 年 11 月,当动物被选择性处死时,移植物坚持专利状态 20 个月。中止了全面尸检,发现这只动物是健康的。察看到一些术后腹部粘连,并且移植物被薄的纤维囊包抄,该纤维囊很容易与移植物名义分别。没有明显的感染迹象,近端或远端吻合处的内膜增生,或移植物或周围区域的炎症。肉眼察看没有移植物生物降解的迹象。从移植物中切下吻合口并贮存在甲醛中以中止组织学检查。移植物的主要部分贮存在盐水中,以避免组织交联,从而使血管周围组织能够化学消化,以便随后检查聚合物资料和移植物结构。 十一、外植体的制备组织切除 移植的移植物(图 4a)由 CardioTech 接纳,贮存在 sa-line 中;用无菌水清洗移植物,并经过钝性解剖去除周围的组织囊。胶囊很容易从移植物的外名义分别。在外部缝合线处有更坚固的附着,并且组织不受干扰以避免损坏移植物名义(图4b)。 图 4a. 收到的外植体的总照片。 图 4b. 在化学物质去除前手动去除血管周围组织 将移植物置于 5% w/w 的 Tergazyme 溶液中。这具有化学消化已附着并生长到移植物微结构中的组织的效果。每七十二小时改换一次溶液,大约需求十四天才干完整清洁生物资料的外植体。酶处置后,将移植物在无菌水中清洗,然后在 40℃+/-2℃的热风烘箱中单调 24 小时(图 4c)。 图 4c. 化学消化后。 十二、外植体的生物耐久性评价为了肯定样品的生物耐久性,选择了以下研讨: 质量控制:内径、壁厚、目测 强度:径向拉伸强度 结构:扫描电子显微镜 化学结构:凝胶渗透色谱 质量控制 目的: 为了评价植入对尺寸特征、内径、壁厚和视觉检查的影响,依照规范操作程序中止。 措施: 内径,校准锥度规,8.5-ISO/DS7198; 壁厚,恒定载荷计,8.7-ISO/DS 7198; 视觉,背照式,8.1-ISO/DS 7198 结果: 内径:5mm +/-0.1 mm; 壁厚:0.9mm+/-0.05mm; 视觉:无缺陷 结果: 移植物的尺寸和外观坚持在正常的批量释放范围内 径向抗拉强度 目的:评价植入物对拉伸强度的影响。 措施:在 Instron 拉伸实验机型号 1011 上依照规范操作程序中止径向拉伸实验。试件长 12mm +/-0.5mm,穿过启齿销组件并装入 Instron 机器;钳口分别是 以 50 毫米/分钟的速度。记载断裂时的伸长和峰值负载,并依据以下等式计算断裂时的负载 结果:测试结果分别为1.55和1.41 N/mm。 结果:两个样品均坚持在大于 1 N/mm 的批放行规范内。 扫描电子显微镜 目的:检查名义和微观结构能否存在环境应力开裂。 措施:由CardioTech在曼彻斯特大学医学院生物科学系电子显微镜部门运用Cam-bridge Stereoscan 360扫描电子显微镜中止SEM检查。 结果:图 5:显现外名义的低倍率扫描,没有环境应力开裂的迹象 图 6:与图 6 相同部位的高倍放大图 图 7:接枝微观结构的高倍放大照片 图5. 外名义的低倍扫描,没有环境应力开裂的迹象。 图 6. 没有环境应力开裂迹象的名义低功率 SEM 照片。 图 7. 相同部位的更高放大倍率,如图 5 所示。 结果:样品没有生物降解的迹象,没有环境应力开裂证明。 凝胶渗透色谱 目的:目的是评价聚合物的化学稳定性。 措施:GPC剖析由英国兰开斯特大学聚合物中心B.Hunt博士中止。 结果: 结果:对照组和测试样品之间没有发现显着差别。 十三:讨论简直一切植入的资料都会在人体内降解。面临的应战是开发适合的弹性体,以使设备在植入物的估量寿命内保险有效。医疗器械中运用的弹性体资料的设备令人诧异地遭到限制。只需两种这样的资料在体内得到了长时间的运用:硅橡胶和聚氨酯。在某些状况下,这两种资料都表示出较差和最佳的性能,细致取决于几何外形、应用和宿主反响。 聚氨酯是一个弹性体家族,比任何其他聚合物都更容易被误解。实践上,这种紊乱是十分难以了解的。“聚氨酯”这个称号用词不当。与主要由重复的酰胺和酯键组成的大多数塑料系列,例如聚酰胺(尼龙)和聚酯(涤纶)不同,聚氨酯中的氨基甲酸酯键不是主要的键。氨基甲酸酯键是最不占优势的键。聚氨酯的生物性能取决于提供最主要的衔接的大分子二醇的组成。 聚氨酯是一种用处普遍的资料,已在人体中运用超越 25 年。事实上,描画聚氨酯用于医疗用处的改性的科学论文可能比迄今为止任何其他资料都多。不幸的是,聚酯版本容易水解,而聚醚版本容易呈现环境应力开裂,因而在短期植入体内的应用有限。 该范畴的许多研讨人员对这些聚合物的生物降解机制中止了普遍研讨,招致开发了新一代的往常称为“生物耐用”聚氨酯。生物耐用聚氨酯是那些在预期的植入期内坚持稳定的聚氨酯。 聚氨酯是三种不同分子或单体的反响产物,通常称为异氰酸酯(或二异氰酸酯)、聚乙二醇和扩链剂。聚氨酯反响通常分两个阶段中止。首先,异氰酸酯与聚乙二醇反响构成低分子量预聚物。其次,经过向预聚物中添加“扩链剂”,将预聚物“扩链”成高分子量聚氨酯。聚乙二醇,也称为软链段,赋予氨基甲酸酯柔软性或弹性,扩链剂(和异氰酸酯)提供硬度。取决于存在的扩链剂和大分子二醇的相对量,聚氨酯能够变软以用于诸如气管导管上的球囊等应用,或使聚氨酯变硬以用于刷子上的刷毛等应用。 经常有人问,为什么不直接改用其他弹性体呢?答案相当简单。没有更好的弹性体资料能像聚氨酯一样表示出高拉伸强度、润滑性、出色的耐磨性、易于制造和良好的生物相容性。经过研讨聚醚氨基甲酸酯的降解机制取得的信息招致了新一代生物耐用弹性聚(碳酸酯)聚氨酯的开发。假如没有这些资料,许多重要的医疗设备,如顺应性聚氨酯血管移植物、低剖面起搏器导线和自密封动静脉通路移植物,可能无法完成。 合适长期应用的弹性体的选择十分有限。迄今为止,独一在身上取得一些胜利的弹性资料是硅橡胶,在某种水平上,还有聚氨酯。固然存在其他弹性资料,但生物相容性和商业可用性问题严重限制了它们在体内长期植入物的运用。表 2 列出了一些商业弹性体。 十四:总结聚氨酯弹性体具有特性组合,使其特别合适用于长期植入的生物医学设备。固然某些聚醚聚氨酯已胜应用作神经和心脏起搏导线绝缘和衔接器模块近二十年,但也呈现了一些问题。较软的版本易受体内应力开裂和氧化现象的影响。固然更刚性的聚合物更具生物稳定性,但它们关于许多所需的设备来说也太硬了。聚酯聚氨酯,例如直到最近才用作植入乳房假体的掩盖物的那些,容易发作水解降解。 在完整了解 ESC 和 MIO 失效机制方面取得了严重停顿,目的是开发更多的生物稳定性资料。目前,至少一种新的聚碳酸酯基聚氨酯ChronoFlex 作为具有优秀机械性能和稳定的长期生物耐久特性弹性体具有很大的前景。 从植入 20 个月后取回的标本的物理、机械、扫描显微镜和 GPC 检查中,我们得出结论,我们的顺应性微孔聚碳酸酯基聚氨酯血管移植物是生物耐用的。生物耐久性是由于我们运用了一种新型的聚碳酸酯基聚氨酯-ChronoFlex。 我们正在运用这种新型聚碳酸酯基聚氨酯-ChronoFlex(富临塑胶供给 联络我们获取资料细致信息)制造血管通路移植物,用于在欧洲的几个中心中止的临床研讨。其他长期体内实验研讨正在中止中,以支持外周动脉旁路移植物的未来临床研讨。 我们的目的是彻底改动用于治疗终末期心血管疾病的医疗器械,由于终末期心血管疾病是西方国度的第一大死因。我们的工作重点是开发血管通路移植物、外周移植物和冠状动脉旁路移植物。 采购人工心脏、人造血管原料-聚碳酸酯基聚氨ChronoFlex 及技术指导 联络:东莞市富临塑胶原料有限公司 |